Q1. (a)

MATH2010B Advanced Calculus I, 2014-15
Midterm Test Solutions

(6 points) Find an equation of the plane passing through the point (1,0,4) and
perpendicular to the line L = {(2,5,8) +t(—1,19,1) : t € R}.

Solution: A normal to the plane is n = (—1,19,1) and a point on the plane is
p = (1,0,4). The equation for the plane passing through p and normal to n is
given by

X-n=p-n.

Since p-n = (1,0,4) - (—1,19,1) = =14+ 0+ 4 = 3, we get
—z+ 19y + 2z =3.
(6 points) Let E = {(z,y) : 22 +4y? = 4} be an ellipse. Write down a parametriza-

tion y(t) : [a,b] — R2 of the ellipse and the definite integral that computes the
length of the ellipse E (you DO NOT have to evaluate the integral).

Solution: A parametrization is given by
~(t) = (2cost,sint), t € [0,27].

Hence we can calculat
7' (t) = (—2sint, cost),

1y (t \/4sm t+cos2t—\/1+3sm t.
Therefore, the length of the ellipse is

21
V' 1+ 3sin?¢ dt.
0

Q2. (8 points) Define the function f(z,y) : R> — R by

%sinxy if x # 0,

flz,y) = { Y if x =0.

Evaluate the limit lim, ,)_,(,0) f(z,y) or explain why the limit does not exist.

Solution: Note that along different straight lines approaching (0, 0),

lim f(z,y) = hmy =0,
(w,9)—(0,0)

1
lim f(z,y) = lim —sin(z-0) =0,

(z,y)—(0,0) z—0 T
y=0
1 sin ka2
li = lim = sin kz? = lim kz - li =0-1=0.
(=, y)lf%o 0) flay) = m%) T sin ke a:lg(l) v xlg%) kax?
y=kx
In fact, we have lim, .y 0,0 f(7,y) = 9 —1. By

definition, there exists §; > 0 small enough such that

sin 6

0

—1‘<1 for any 0 < 6] < 4.
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This implies that
sin 6

‘<2 for any 0 < |6| < 01.

To show that lim(, ) (0,0 f(z,y) = 0, we use the € — J-definition of limit. Let ¢ > 0 be
a small number, say € < 1, we take 0 < § < min(v/d1, €/2), then we want to show that
for any (z,y) such that \/22 + y? < §, we have

[f(z,y)] <e.

Since f(z,y) is defined differently at different points, we have to consider 3 cases:

Case 1: x # 0 and y # 0. Then, since |zy| < LJQFZ’Q < %1, we have

sin xy

<2yl <e

1.
el = | Fsinas] =1y

Case 2: x =0 and y # 0. Then clearly |f(z,y)| = |y| <.
Case 3: x # 0 and y = 0. Then |f(z,y)| =0 < e.

Combining all these 3 cases, we have proved our assertion.
(8 points) Find an equation for the tangent plane of the surface
S ={(z,y,2) ER?: 2z = e¥sinx}

at the point (7,0,0).

Solution: Let f(z,y) = e¥sinz. Then taking partial derivatives, we get

{ fr =¢eYcosz,

fy =¢eYsinx,

which implies f;(m,0) = —1 and f,(7,0) = 0. The equation for the tangent plane is
given by the formula

z = f(m,0) + fz(m,0)(z — ) + fy(m,0)(y —0).

Since f(m,0) = 0, the equation is just

T+ z=m.
(8 points) Show that the function
1 22
u(t,r) = —=e 4t
() =

satisfies the partial differential equation u; = u,, for any ¢ > 0 and =z € R.

Solution: Taking partial derivatives directly.
11 2 1 2 z?
U= —=——=€ —e —
S YEIP Vi 442

1 1+:c2
TP 2 " 4)



Q5.

Q6.

1 2 1 22
VA <_2t+ 4t2>

1 2/ 1 a2
~prt " <_2+4t>'

Hence, we have shown that u; = u,x.

(12 points) Find the maximum and minimum of the function f(z,y) = xy on the region
R={(z,y) e R? : 2® + y> < 2}.
Locate the points where the minimum and maximum are achieved.

Solution: For the interior critical points, we solve

{fx:yzo
fy=2=0

to get only one critical point (0,0) with £(0,0) = 0.

For the boundary points, we use polar coordinates (r, ), hence OR is simply r = V2.
In polar coordinates,

f(V2,0) = 2sin 6 cos § = sin 26,

which clearly has its maximum= 1 when 6 = 7/4 and 57/4, and has its minimum= —1
when 6 = 37 /4 and 77 /4.

Combining all these, the maximum of f is 1 located at (1,1) and (—1,—1) and the
minimum of f is —1 located at (1,—1) and (—1,1).

(12 points) Consider the function

T

xr — 2ytan~! m when y # 0

e ={

x when y =0
compute the partial derivative f, and determine if f, is continuous at (0,0).

Solution: Differentiating directly, we get

2y’ oh £0
z,y) = { TH2 when y )
fo(@,9) { 1 when y =0.

Note that

lim fy(x,y)= lim 1=1,
(z,y)—(0,0) (z,y)—(0,0)

y=0 y=0

_y2

lim  fo(z,y) = lim —5- = —1,
(z,y)ﬁ(()0,0) y—0 y

r=

which are not equal. Therefore, f, is NOT continuous at (0, 0).



